微软发布预训练的类人控制模型库MoCapAct,助力人工仿人控制的高级研究
(映维网Nweon2022年09月05日)要令两足人形机器人像摇滚歌手米克·贾格尔一样跳舞需要什么?实际上 , 即便是令它们简单地站起来 , 自由行走 , 或者以其他我们认为理所当然的方式移动都是一个挑战 。
为了帮助社区实现仿人控制的高级研究 , 微软和佐治亚理工学院日前发布了一个预训练的类人控制模型库MoCapAct , 从而允许研究人员以传统方法所需计算资源的一小部分来实现人工仿人控制的高级研究 。
文章图片
在为人类设计的环境中 , 两足行走提供了无与伦比的多功能性 。 通过混合和匹配广泛的基本运动技能 , 从步行到跳跃到单脚平衡 , 人们可以跳舞、踢球、以及进行其他复杂的高水平运动 。 如果机器人要充分发挥其作为辅助技术的潜力 , 掌握各种两足运动是一项重要要求 。
然而 , 即便是上述技能中最简单的一项 , 其都需要数个关节的精细编排 。 复杂的工程可以控制这种复杂性 , 但要令两足机器人具备通用性 , 或是后继的元宇宙 , 它显然需要进行学习 。 训练具有人形形态的人工智能代理 , 并使其在整个人类运动多样性中匹配人类的表现 , 这是人工物理智能的最大挑战之一 。 由于物理机器人实验的变化无常 , 目前这方面的研究主要是在仿真中进行 。
遗憾的是 , 它涉及计算密集型方法 , 从而限制了研究社区的参与 。 针对这个问题 , 微软研究院的机器人学习小组和佐治亚理工学院发布了一个大型的预训练类人控制模拟库MoCapAct , 从而允许研究人员以传统方法所需计算资源的一小部分来实现人工仿人控制的高级研究 。
人形机器人控制研究的计算资源要求非常高 。 学习运动技能的主要途径是使用动捕MoCap 。 MoCap这种动画技术在过去数十年中广泛应用于娱乐行业 。 它包括在演员执行任务(如慢跑)时记录其身体上的多个关键点的运动 , 如肘部、肩部和膝盖 。
因此 , MoCap片段认为是人体运动非常简洁和精确的总结 。 由于这一点 , 与机器学习的其他主要领域中的训练数据相比 , 可以用更少的计算从MoCap片段中提取有用的信息 。 除此之外 , MoCap数据广泛可用 。 CMU运动捕捉数据集等存储库包含人体任何常见运动的数小时片段 , 下面显示了数个示例的可视化 。 所以 , 为什么仿人机器人模仿人类动作如此困难呢?
需要注意的是 , MoCap片段不包含在物理机器人上或在模拟物理力的模拟中模拟演示运动所需的所有信息 。 它们只向我们展示了动作技能的样子 , 而不是导致演员肌肉产生动作的潜在肌肉运动 。
即便MoCap系统记录了相关信号 , 其都不会有多大帮助:模拟人形机器人和真实机器人通常使用电机而不是肌肉 , 这是一种截然不同的关节形式 。 尽管如此 , 仿人机器人的驱动都由一种控制信号驱动 。 如果与使用MoCap数据作为指导的其他学习和优化方法相结合 , 则MoCap片段是计算控制信号的有价值辅助工具 。
微软和佐治亚理工学院希望通过MoCapAct消除的计算瓶颈正是由所述方法带来 , 亦即强化学习(RL) 。 在模拟中 , 大部分人工智能运动研究目前都集中于此 , RL可以通过给定的MoCap片段中的姿势序列来恢复控制输入序列 。 结果是一种与MoCap片段无法区分的运动行为 。
从单独的MoCap片段中学习的单个基本行为的控制策略可以为运动研究打开大门 , 例如 , 将所述行为组合成单个“多技能”神经网络 , 并通过在它们之间切换来训练更高级别的运动能力方法 。 然而 , 由于需要学习数千种基本的运动技能 , RL昂贵的试错法为进入这一研究路径造成了巨大障碍 。 所以 , 微软和佐治亚理工学院希望通过MoCapAct数据集解决这个问题 。
- wi-fi|华为发布第三代FTTR产品星光F30系列 家庭Wi-Fi速率进入2Gbps时代
- iPhone|6699元起!iPhone线下预售价曝光,一半价格选国产旗舰不香吗?
- Google|华为发布会正式向谷歌宣战了?
- 米家|米家太阳能板100W开启定金预售!随晒随充约3.1kg
- 华为mate|华为Mate50系列反向保密营销,把悬念都留在发布会,效果出奇地好
- 大批重磅新品来袭!一文看透华为Mate 50系列新品发布会
- 华为Mate 50系列发布,网友:看来硬刚苹果是没有希望了
- 酷睿处理器|英特尔13代酷睿处理器阵容全曝光 首批月底发布,定价或遇难题
- 4nm加持!高通发布骁龙6 Gen1芯片:AI性能增加3倍
- 黑科技|Mate50 Pro发布:骁龙8+和多项黑科技,推荐3款下半年换机必看机型