社交平台、短视频平台等公共网络场所|instagram首次推出两大反网络暴力功能( 三 )
一对一、一对多或多对一的文本匹配 , 从理解不同字词所表达的含义入手 , 结合知识图谱 , 判断两段文本核心观点的一致程度 。
例如:对同一事件或两个不同事件的评论进行相似度对比 , 可以根据结果看看用户在用词或表达上有什么共同点 。 不同事件间的评论对比 , 还能帮助发现“恶性”事件及其评论内容之间的潜在关系 , 甚至能洞察出某件事/某个人近期的活动形象会不会影响对其舆论的积极/消极性.词法分析
句式分析:对文本内容中字词的解读 , 依照文本核心观点表达 , 将字词拆分成有语法含义的序列;
词法分析:基于知识图谱以及字词间的关系分析 , 可以展示出每个字词的词性和语法结构 。
针对网民们成千上万条评论 , 可以通过词法分析引擎来观察积极评论或消极评论分别常用的用词习惯、句式、词法 。
从中可以总结出当下网民普遍所使用的的话术/用词习惯 , 以及不同人群在表达自己观点时所特有的语言特点 。
总体而言 , 基于自然语言处理的技术手段对网络暴力文本进行分析 , 不仅能及时控制负面影响扩散 , 也能让监管机构和平台运营商更好地了解网络暴力事件产生成因 。
03AI算法升级:上演“疑犯追踪”
【社交平台、短视频平台等公共网络场所|instagram首次推出两大反网络暴力功能】如果说自然语言处理是基于对网络暴力文本及用户行为的综合分析 , 当不能检测评论内容的情况下 , 能否精准地识别出潜在的网络暴力者?
近日 , 日本德岛大学的计算机研究者联合日本大型网络公司代理商CyberAgent在《人类行为计算》上发表论文 , 他们用机器学习的方法 , 分析了CyberAgent旗下一款社交类游戏的使用数据 , 并且在不监测聊天内容的情况下 , 仅基于聊天次数、聊天对象、聊天时间等基本信息 , 就能较为精准地识别出潜在网络违法者 , 并预测出违法行为的大概时间 。
研究者基于两种传统犯罪学理论开发了这套算法:日常活动理论和社会传染理论 。
日常活动理论提出 , 许多犯罪行为并不是随机发生的 , 犯罪者和被害人往往在日常活动中有交集 。
例如 , 在现实生活中 , 小偷在盗窃前会去目标地点踩点 , 并观察目标人物的行为规律;同样的 , 网络上的犯罪者更需要提前与“猎物”取得联系 , 套取信任 。
因此 , 玩家的社交活动数据中或许就藏着“犯罪预告” 。
另外 , 社会传染理论还补充了重要的一点:违法倾向或违法行为也会传染 。 最常见的例子就是网络暴力 。
网络暴力往往来源于某种过激情绪的广泛传播:在群体的裹挟下 , 有的人不知不觉就失去了独立判断能力 , 无意间成为了网上的施暴者 。
在这两种理论的基础上 , 研究者选择了是一款名叫PiggParty的手机游戏 。
它主打社交功能 , 用户登录账号后 , 可以装扮虚拟的房间和个人形象 , 与朋友或陌生人以私聊、群聊、公聊的方式进行交流 。
研究人员采用擅长从复杂数据中提取特征的算法——多层非线性模型 , 对55万用户6个月内产生的聊天数据 , 包括每名用户的聊天频率、聊天时间、消息的接收者等进行了分析 。
研究者组合多种神经网络模型和算法 , 搭建了预测违法事件的人工智能 。
性能测试结果显示 , AI能根据用户数据 , 较为准确地预测未来的违法者和受害者账户 。 输入用户两个月内聊天的时间、频率、对象 , AI对接下来两个月内违法账户的预测准确率可以达到84.85% , 对受害者账户的预测准确度也接近85% 。
- |跑步听歌用哪种耳机更合适、最适合跑步听歌的耳机
- 努比亚Z40 Pro摄影再升级,拍星座、富士胶片等玩法更多样
- 微信支付|3月1日起,微信支付商户、服务商进件需按照新流程入驻
- 阿里巴巴|3月1日起,微信支付商户、服务商进件需按照新流程入驻
- 量子计算云平台|中科院量子计算云平台成功部署上线两款全新国产量子编程软件
- 华为|意料之外!华为、魅族都不愿意看到的局面还是出现了
- 暮色中的咸阳
- 显卡|手机CPU性能落后高端显卡十倍以上,但手机2k、4k分辨率看4k视频无压?
- Redmi 10新品 | mini
- gtx|i7-6700、GTX 1070的配置,玩吃鸡依旧卡,配置落后了?