7.自动扩展服务器用户无需将应用程序容器化,并在Kubernetes中运行它们,以便在云中自动扩展它们。大多数公有云允许用户通过添加(或减少)实例或增加(或减少)实例大小,根据使用情况自动向上(或向下)扩展虚拟机和服务。
8.行星级的数据库全球主要的公有云供应商和数据库供应商已经实施了行星级的分布式数据库,这些数据库具有数据结构、冗余互连和分布式共识算法等基础,使它们能够高效地工作,并具有高达5个9的可靠性(99.999%的正常运行时间)。特定于云计算的示例包括Google Cloud Spanner(关系)、Azure CosmosDB(多模型)、Amazon DynamoDB(键值和文档)和Amazon Aurora(关系)。供应商示例包括CockroachDB(关系)、PlanetScale(关系)、Fauna(关系/无服务器)、Neo4j(图形)、MongoDB Atlas(文档)、DataStax Astra(宽列)和Couchbase Cloud(文档)。
9.混合服务对数据中心进行大量投资的企业通常希望将其现有的应用程序和服务扩展到云平台中,而不是用云服务取代它们。主要的云计算供应商现在都提供了实现这一目标的方法,包括使用特定的混合服务(例如,可以跨越数据中心和云计算的数据库)以及连接到公有云的内部部署服务器和边缘云资源,通常称为混合云。
10.可扩展的机器学习训练和预测机器学习训练(尤其是深度学习)通常需要数小时到数周的大量计算资源。另一方面,机器学习预测需要每秒钟的计算资源,除非进行批量预测。使用云计算资源通常是完成模型训练和预测的最便捷方式。
11.云端GPU、TPU和FPGA在CPU集群上,使用大型模型和非常大的数据集进行准确训练所需的深度学习通常需要一周以上的时间。GPU、TPU和FPGA都可以显著地缩短训练时间,并且将它们放在云端可以在需要时轻松使用它们。
12.预训练的人工智能服务许多人工智能服务可以通过预训练模型很好地执行,例如语言翻译、文本到语音和图像识别。所有主要的云服务都提供基于稳健模型的预训练的人工智能服务。
13.可定制的人工智能服务预训练的人工智能服务有时并不能完全满足用户的需求。迁移学习仅在现有模型之上训练几个神经网络层,与从头开始训练模型相比,它可以相对快速地为用户提供定制服务。同样,主要的云服务提供商都提供迁移学习,尽管他们的名字并不相同。
14.监控服务所有云平台都支持至少一种监控服务,让用户轻松配置云服务进行监控。监控服务通常会显示一个图形仪表板,并且可以配置为通知用户异常的性能指标。
15.分布式服务数据库并不是唯一可以从以分布式方式运行中受益的服务,其面临的问题是延迟。如果计算资源远离数据或管理的进程,则发送和接收指令和信息需要很长时间。如果反馈回路中的延迟太高,则回路很容易失控。如果机器学习和数据之间的延迟太高,则执行训练所需的时间可能会增加。为了解决这个问题,云服务提供商提供连接的设备,可以将他们的服务扩展到客户的数据中心(混合云)或客户的工厂车间附近(边缘计算)。
16.边缘计算将分析和机器学习在地理上靠近机器和现实世界对象(物联网)的需求产生了专门的设备,例如带有 GPU 和传感器的微型计算设备,以及支持它们的架构,例如作为边缘服务器、自动化平台和内容交付网络。最终,这些设备都连接云端,但在边缘执行分析的能力可以显著地减少发送到云端的数据量,并减少延迟。
以后当听到有关云支出的抱怨时,也许可以指出云计算具有的好处。任何一项云创新都可以证明其使用是合理的。综合起来,云计算带来的好处确实是不可抗拒的。
原文来自:https://www.linuxprobe.com/irresistible-cloud-innovation.html
- 新能源|网易云音乐首届《村民联欢晚会》喊你:回云村,过新年!
- 数字经济|邹庆忠:加大创新投入 全面投身数字经济建设
- 京东|马云还是失算了,京东和阿里传来消息,刘强东下了一步好棋
- 航天航空|百度研究院发布2022科技趋势预测:人工智能将呈现与多领域融合创新态势
- CPU处理器|12nm工艺16核 龙芯3C5000L自研CPU斩获年度自主创新产品奖
- 云谷|全球连线|无人酒店、人工智能体验街……在“云谷”感受“未来生活”
- 显卡|11499元!ROG幻16新品预约:全新星云屏、双显新玩法
- 信创|中国电子云发力“云原生存储”赛道
- 多云|VMware永葆青春的秘诀,从虚拟化、私有云到多云管理的进化
- 速率|地铁5G网速再次大提升!上海移动率先完成全国首个地铁隧道4.9GHz特型天线和2.6G漏缆融合5G创新试点