算法|腾讯发布国内首份可解释AI报告!层层分析「套娃式」AI算法( 二 )

最早没有医学影像等技术,人体就相当于一个不可拆分的黑盒子,而中医从外入手,运用「望闻问切」的方法,间接地探出病因,再对症下药,逐渐调理,使病人的内部实现平衡统一,得以治病。
同样是在医学场景的运用,使用人工智能却不同于使用中医,人工智能的使用需要建立在数据之上,这就需要大量的病人诊断资料。但即使有了数据,哪怕是同一种疾病,由于每个人的情况不同,AI也可能做出错误判断。因此,对AI「黑盒子」的破解更为急迫。
自动驾驶汽车失控悲剧频频发生;使用AI面部识别技术检测马路上的行人,监测乱穿马路现象,却误将广告牌上的人物图片识别为行人……人工智能的这些负面影响,使人们不得不对其提高警惕。
AI 作为一项技术,在给人们带来诸多便利,给社会带来效益的同时,难免成为一把双刃剑。
2

腾讯发布国内首份可解释 AI 报告
许多科技公司,像谷歌、微软、IBM、京东、蚂蚁集团、美团等纷纷推出相应举措。
腾讯刚发布不久的《可解释AI发展报告 2022——打开算法黑箱的理念与实践》,正应验了大厂治理 AI 的迫切性。
算法|腾讯发布国内首份可解释AI报告!层层分析「套娃式」AI算法
文章插图
报告链接:https://docs.qq.com/pdf/DSmVSRHhBeFd0b3Zu
报告总共分为五部分,主要内容分别为可解释 AI 的概述、发展趋势、行业实践、对未来发展的看法以及最后总结。
  • 可解释 AI 的概述部分,主要概述了机器学习模型所面临的可解释性挑战,可解释 AI 的意义,可解释 AI 与透明度、问责制,以及可解释 AI 局部和全局可解释的两个维度。
  • 可解释 AI 发展趋势部分,主要解释了AI的透明性和可解释性逐渐成为立法和监管关注的焦点,对政府公共部门使用的 AI 系统提出较高的透明度与可解释性要求,对商业领域的AI系统在可解释性方面避免作“一刀切”要求,行业积极探索可解释AI的技术解决方案。
  • 在可解释 AI 的行业实践部分,主要介绍了谷歌模型卡片(Model Cards)机制,IBM 的 AI 事实清单(AI Fact Sheets)机制,微软的数据集数据清单(datasheets for datasets)机制,其他可解释性AI工具以及可解释AI的腾讯实践。
  • 在第四部分,主要讲述了对可解释AI未来发展的几点看法,包括立法和监督宜遵循基于风险的分级分类分场景治理思路;探索建立合理适度的、适应不同行业与应用场景的AI可解释性标准;探索可解释的替代性机制,形成对AI算法的有效约束;引导、支持行业加强可解释AI研究与落地,确保科技向善;增强社会公众的算法素养,探索人机协同的智能范式。
作为业内首份AI报告,获得学界和业界专家普遍一致好评。
在数据隐私保护一块颇有耕耘的微众银行首席人工智能官杨强评价:
「可解释 AI 是一个庞杂的领域,这份报告起了一个非常好的头,在这个基础上需要开展长期的研究。现在的各种算法还无法在效率和可解释性两方面都达到很高的要求,需要根据不同需要进行取舍。而且 AI 的可解释性是一个长期的问题,不会很快有一个通用的可解释框架,可以在一些比较重要的领域先行探索解决方法,指明未来的发展方向。」
杨强教授十分关注数据隐私保护的内容,近年来在国内大力推举强调具有「数据可用不可见」特征的联邦学习技术的研究与应用,促进联邦学习框架的开源与研究。去年3月,由微众银行发起制定的国内首个联邦学习标准正式通过 IEEE 认证,构成了国内研究者对数据保护所做的诸多努力中的一环。