芯片|英特尔发新神经形态芯片,31mm2容纳100万人工神经元( 二 )

芯片|英特尔发新神经形态芯片,31mm2容纳100万人工神经元
文章插图
常规计算机架构与神经形态架构的对比于是,解决神经形态计算问题的芯片出现了。最初是在20世纪80年代,工程师Carver Mead创造了术语“神经形态处理器”(neuromorphic processors)来描述以基于大脑的松散方式运行的计算机芯片,为这个领域奠定了基础。神经形态芯片如何运行?Loihi芯片包含通过通信网络连接的128个独立内核,每个独立内核中都有大量单独的“神经元”或执行单元,每一个神经元都可以接收来自任何其他神经元脉冲形式的输入——同一核心中的邻居、同一芯片上不同核心中的一个单元或完全来自另一个芯片。随着时间的推移,神经元会整合它接收到的尖峰信号(Spiking Signals,神经元通过跨突触相互发送尖峰信号进行交流),并根据其编程的行为来确定何时将自己的尖峰信号发送到与其连接的任何神经元。所有尖峰信号都是异步发生的。在设定的时间间隔内,同一芯片上的嵌入式x86内核会强制同步。届时,神经元将重新计算其各种连接的权重——本质上,是决定对所有向其发送信号的单个神经元给予多少关注。具体运行过程是,芯片上的部分执行单元充当树突,部分基于从过去行为得出的权重处理来自通信网络的传入信号,以确定活动何时超过临界阈值,并在超过时触发其自身的峰值。然后执行单元的“轴突”查找它与哪些其他执行单元进行通信,并向每个执行单元发送一个尖峰信号。与普通处理器不同,神经形态芯片没有外部RAM(Random-access memory,随机存储器),而是每个神经元都有自己专用的小型内存,这包括它分配给来自不同神经元的输入的权重,最近活动的缓存,以及发送尖峰信号的所有其他神经元的列表。神经形态芯片与传统处理器间的另一大区别则是能效。IBM于2014年推出的TrueNorth芯片,使用的功率还不到在传统处理器上模拟尖峰神经网络所需的0.0001%。英特尔神经拟态计算实验室主任Mike Davies 表示,Loihi在某些特定工作负载上可以比传统处理器高2,000倍。最新的Loihi 2取得了什么样的新进展?芯片|英特尔发新神经形态芯片,31mm2容纳100万人工神经元
文章插图
Loihi 2使用了更先进的制造工艺——英特尔第一个EUV工艺节点Intel 4,现在每个内核只需要原来所需空间的一半。同时,Loihi 2不仅能够通过二维连接网格进行芯片间的通信,还可以在三维尺度上进行通信,从而大大增加了能处理的神经元总数。每个芯片的嵌入式处理器数量从三个增加到六个,每个芯片的神经元数量增加了八倍。同时,英特尔表示,它已经通过并优化了所有异步硬件,使 Loihi 2在更新神经元状态时的性能提高了一倍,并将尖峰生成的性能提高了十倍。另一个主要变化是处理器评估神经元状态以确定是否发送尖峰信号的部分。在原始处理器中,用户可以执行一些简单的数学运算来做出决定。在Loihi 2中,则可以访问简化的可编程管道,执行比较和控制指令流。据科技媒体《Ars》表示,Davies在接受其采访时表示,“你可以将这些程序指定到每个神经元级别,这意味着两个相邻的神经元可以运行完全不同的程序。”不仅如此,“每个神经元处理其内部记忆的方式也更加灵活——会有一个固定分配和一个可以更动态划分的内存池。”与Loihi 2同时推出的开源软件框架——Lava虽然尖峰神经网络(spiking neural networks)可以非常有效地解决很多问题,但目前的一个困难在于,这是一种非常不同的编程类型,需要以同样不同的方式思考算法开发,要怎样找到了解如何使用的人?Davies表示,目前精通它的大多数人都来自理论神经生物学背景。到目前为止,这意味着英特尔主要将Loihi推向了研究社区,这限制了其市场销售范围。从长远来看,英特尔希望看到Loihi衍生品最终出现在更广泛的系统中,从充当嵌入式系统中的协处理器到数据中心的大型Loihi集群。那么,英特尔就需要很容易找到可以为其编程的人。为此,英特尔将Loihi 2的发布与Lava的开源软件框架的发布结合起来。“Lava旨在帮助神经形态编程传播到更广泛的计算机科学界,”Davies在接受外媒采访时表示。责任编辑:李跃群